Exercise 15

Graph the two basic solutions along with several other solutions of the differential equation. What features do the solutions have in common?

$$
\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+2 y=0
$$

Solution

This is a linear homogeneous ODE with constant coefficients, so its solutions are of the form $y=e^{r x}$.

$$
y=e^{r x} \quad \rightarrow \quad \frac{d y}{d x}=r e^{r x} \quad \rightarrow \quad \frac{d^{2} y}{d x^{2}}=r^{2} e^{r x}
$$

Plug these formulas into the ODE.

$$
r^{2} e^{r x}+2\left(r e^{r x}\right)+2\left(e^{r x}\right)=0
$$

Divide both sides by $e^{r x}$.

$$
r^{2}+2 r+2=0
$$

Solve for r.

$$
\begin{gathered}
r=\frac{-2 \pm \sqrt{4-4(1)(2)}}{2}=\frac{-2 \pm \sqrt{-4}}{2}=-1 \pm 2 i \\
r=\{-1-2 i,-1+2 i\}
\end{gathered}
$$

Two solutions to the ODE are $e^{(-1-2 i) x}$ and $e^{(-1+2 i) x}$. By the principle of superposition, then,

$$
\begin{aligned}
y(x) & =C_{1} e^{(-1-2 i) x}+C_{2} e^{(-1+2 i) x} \\
& =C_{1} e^{-x} e^{-2 i x}+C_{2} e^{-x} e^{2 i x} \\
& =e^{-x}\left(C_{1} e^{-2 i x}+C_{2} e^{2 i x}\right) \\
& =e^{-x}\left[C_{1}(\cos 2 x-i \sin 2 x)+C_{2}(\cos 2 x+i \sin 2 x)\right] \\
& =e^{-x}\left[\left(C_{1}+C_{2}\right) \cos 2 x+\left(-i C_{1}+i C_{2}\right) \sin 2 x\right] \\
& =e^{-x}\left(C_{3} \cos 2 x+C_{4} \sin 2 x\right),
\end{aligned}
$$

where C_{1}, C_{2}, C_{3}, and C_{4} are arbitrary constants.

Below is a graph of these two solutions.

Both solutions blow up as $x \rightarrow-\infty$.

